Actions

Word2vec basic.py: Difference between revisions

From Algolit

Line 6: Line 6:
  
 
=History=
 
=History=
Word2vec is a neural network
+
Word2vec consists of related models used to generate vectors from words (also called [[word embeddings]]). It is a two-layer neural network, produced by a team of researchers led by Tomas Mikolov at *Google*.
  
 
=word2vec_basic_algolit.py=
 
=word2vec_basic_algolit.py=

Revision as of 16:41, 3 October 2017


Graph generated by the word2vec_basic.py example script, trained on the book "Mankind in the Making" by H.G. Wells.

This is an annotated version of the basic word2vec script. The code is based on the Word2Vec tutorial provided by Tensorflow: https://www.tensorflow.org/tutorials/word2vec.

History

Word2vec consists of related models used to generate vectors from words (also called word embeddings). It is a two-layer neural network, produced by a team of researchers led by Tomas Mikolov at *Google*.

word2vec_basic_algolit.py

The structure of the annotated word2vec script is the following:

  • Step 1: Download data. (optional)
  • Algolit step 1: read data from plain text file
  • Step 2: Create a dictionary and replace rare words with UNK token.
    • Algolit extension: write the dictionary to dictionary.txt
  • Step 3: Function to generate a training batch for the skip-gram model.
  • Step 4: Build and train a skip-gram model.
    • Algolit extension: select your own set of test words, using the dictionary.txt
  • Step 5: Begin training.
    • Algolit extension: write training log to logfile.txt
  • Step 6: Visualize the embeddings.

Source

The script provides an option to download a dataset from

Dictionary

A snippet from the dictionary.txt file:

0: 'UNK', 1: 'the', 2: 'of', 3: 'and', 4: 'to', 5: 'a', 6: 'in', 7: 'is', 8: 'that', 9: 'it', 10: 'be', 11: 'for', 12: 'as', 13: 'are', 14: 'with', 15: 'not', 16: 'this', 17: 'or', 18: 'will', 19: 'at', 20: 'we', 21: 'but', 22: 'by', 23: 'may', 24: 'his', 25: 'all', 26: 'an', 27: 'these', 28: 'they', 29: 'have', 30: 'he', 31: 'from', 32: 'our', 33: 'has', 34: 'The', 35: 'no', 36: 'more', 37: 'which', 38: 'one', 39: 'there', 40: 'would', 41: 'its', 42: 'so', 43: 'their', 44: 'than', 45: 'children', 46: 'very', 47: 'things', 48: 'any', 49: 'upon', 50: 'i', 51: 'can', 52: 'if', 53: 'do', 54: 'who', 55: 'child', 56: 'new', 57: 'life', 58: 'It', 59: 'should', 60: 'them', 61: 'only', 62: 'world', 63: 'must', 64: 'on', 65: 'such', 66: 'great', 67: 'people', 68: 'man', 69: 'into', 70: 'most', 71: 'out', 72: 'little', 73: 'what', 74: 'was', 75: 'every', 76: 'some', 77: 'much', 78: 'certain', 79: 'And', 80: 'about', 81: 'men', 82: 'english', 83: 'far', 84: 'present', 85: 'first', 86: 'many', 87: 'been', 88: 'thing', 89: 'those', 90: 'home', 91: 'good', 92: 'But', 93: 'quite', 94: 'way', 95: 'might', 96: 'other', 97: 'us', 98: 'general', 99: 'They', 100: 'social',

Logs